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Abstract. The Landau-Ginzburg- Wilson Hamiltonian is a function that relates Landau’s 
phenomenological theory of magnetic phase transitions to the quantum mechanics of a 
microscopic spin model. We study how the symmetry of the system under consideration 
manifests itself in these different descriptions of the thermodynamic properties (density 
operator, LGW Hamiltonian, other functions of the order parameters). The results of this 
discussion are used to comment on divergent opinions in the literature concerning the use 
of corepresentations in magnetic phase transitions. 

1. Introduction 

The Landau theory of phase transitions is a phenomenological theory based on some 
general assumptions [I]. The most fundamental assumption is that the equilibrium 
thermodynamic potential, which carries all information on the thermodynamic 
behaviour of the system, may be expressed in terms of a non-equilibrium thermodynami- 
cal potential (NETP) called Landau’s free energy [2-41. The latter depends on both the 
thermodynamic variables and some additional tensorial variables, the so-called order 
parameters. Another basic assumption of Landau is that the NETP is invariant under 
a group of transformations of the order parameters. It is believed that this group 
coincides with the symmetry group of the most regular phase (‘high symmetry phase’) 
[3-51. Here the concept of phases is introduced by modelling the system as a quasi- 
classical system that admits a simple geometrical interpretation. For instance, a mag- 
netic crystal is usually represented as a regular arrangement of localized atomic 
magnetic moments that transform like axial vectors [6]. 

Although the above-mentioned approach proves to be very useful in the analysis 
of experimental data [6-121 it still contains a certain amount of ambiguity. Especially 
the contradictory results obtained for magnetic phase transitions are well documented 
[4, 16-21]. These inconsistencies mainly originate from two problems that aTe still 
considered to be open questions. (i) What should be the symmetry group of the NETP 

for transitions between two magnetically ordered phases-the group of the higher- 
symmetry ordered phase [14-211 or that of the paramagnetic phase of the crystal 
[6- 12]? (i i)  What types of symmetry groups and representations (corepresentations) 
are to be used to get the right result? This problem is a consequence of the fact that 
the operation of time inversion that changes the sign of the magnetic order parameter 
can be represented either by a linear operator 8 or by the antilinear Wigner operator 
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6 [22,23]. While in the first case ordinary representation theory is appropriate [6-121 
one has to use corepresentations of the magnetic group in the second case [13-201. 

The aim of the present paper is to answer these questions. The solution proposed 
here emerged from the view that in deriving the properties of the Landau free energy 
one has to go back to the fundamental equations of statistical physics, i.e. to the 
partition :unction of a quantum system specified by a Hilbert space and a Hamilton 
operator H. This is a particular generalization of Landau's ideas to quantum mechanical 
systems (see [ 11, section 147). We especially clarify the transformation properties of 
the Landau-Ginzburg- Wilson ( LGW) Hamiltonian which links the canonical density 
operator (and thus the Hamilton operator of the system) to Landau's free energy. 

The paper is organized as follows. In section 2 we introduce the LGW Hamiltonian 
Q> for a general spin system, considering especially various sets of parameters as the 
domain of this function. In section 3 the invariance properties of (D are derived from 
the symmetry group of the Hamilton operator. In section 4 we consider also other 
functions defined on the same set of thermomagnetic variables. We then discuss in 
more detail the relation between the symmetry group of the Hamilton operator and 
that of the LGW Hamiltonian, paying special attention to the operations of time reversal 
and complex conjugation. These general considerations are illustrated with the example 
of a magnetic crystal in section 6 and our conclusions are summarized in section 7. 
In an appendix it is outlined under which conditions the quantum mechanical system 
is completely determined by the function Q>. 

2. Definition of the Landau-Ginzburg-Wilson Hamiltonian 

We consider a magnetic system with Hamiltonian 

fi= J & V S e $ V  
1.J I I 

rs61,V 

where i, j are labels of the localized spins and 3' are the Cartesian components of the 
spin at a given site; for Ising models the summation over 5; 7) reduces to a single term. 
The partition function is 

and the equilibrium free energy takes the form 

F = -p- '  In Z. (3) 

The projection of the total magnetic moment of the system into a direction specified 

(4) 

by two angles 4, 6 or the corresponding unit vector 

n ( 4 ,  6) = (cos 4 sin 6, sin 4 sin 6, cos 0 )  

is 

here + B  is the Bohr magneton and g, is the g-factor of the ith particle. This operator 
is related to the z component of the total magnetic moment by a unitary transformation 
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corresponding to a rotation in three-dimensional space: 

&he ,  +) f iZ&4,  4 +)+ 

= &4, 4 +)'Q(O, O)&#J, 0, +)+ 

= C  nE(4 ,  e)'Qe = A(6, e ) .  ( 6 )  
E 

In this equation the operator k(4, 8, +) is the usual rotation operator parametrized 
by the Euler angles 4, 8, + 

i ( 4 ,  e, 9 )  = exp(-i&) exp(-i&) exp(-i+S') (7) 

As the rotation oeerators are unitary, all operators k ( 4 ,  0)  have the same spectrum 
as the operator M'. In the following we assume that the g-factors coincide for all 
spins contributing to M' so that the magnetic moment isproportional to the total spin. 

It follows from the definition of the spin operators ST that the operator I&' has a 
pure point spectrum. Let its spectral decomposition be 

A' = 1 M @ ( M ) .  
M 

(9) 

The projection operators $( M )  that occur in this decomposition may be used to define 
a function 0: 

0 ( M )  = -p- '  ln(Tr exp( -@A)?( M ) ) .  (10) 

The function 0 is defined on a finite set of points M and is real valued since fi and 
the projectors @ ( M )  are Hermitean operators. Here and in most of the following 
discussion the dependence of Q, on p and I? (or the exchange integrals Jf,?) ',s not 
shown explicitly. The resolution of unity in terms of the projection operators P ( M )  

C $ ( M ) = ?  
M 

allows one to express the partition function in terms of 0: 

2 = exp(-p@(M)).  
M 

The function 0 is known as the Landau-Ginzburg-Wilson (LGW) Hamiltonian. As 
will be shown elsewhere [24], this function is not only of interest in itself but can also 
be used to define another function & with the following properties: first, in the 
thermodynamic limit 6 becomes a continuous function of a continuous variable M 
ranging over the spectrum of the operator k'; second, one may set 

F=&(M,)  (13) 
where &(MO)  is the absolute minimum of & ( M ) .  For a Hamiltonian that admits a 
ferromagnetic transition, &( M )  is nothing but the Landau free energy obtained through 
Landau's approximation [ 11 generalized to the quantum case [24,25]. Although their 
analytic properties are quite different, the functions 0 and 6 have the same transforma- 
tion properties under the transformations considered in the next section. 
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The definition of @ is ea$Iy generalized from one magnetic moment, say Mz, to a 
set of commuting moments M f .  For such a set the common projection operators p( M) 
are labelled by vectors 

M = ( M , ,  M2, . . .  ) (14) 

$ f ; p ( M )  = M,?(M). (15) 

and defined by the eigenvalue equations 

The label 1 = 1 ,2 , .  . . distinguishes the subsystems into which the original system is 
divided. For a magnetic crystal consisting of localized spins it is assumed that both 
the number of subsystems and their size go to infinity in the thermodynamic limit (see 
section 4). In any case all spins contained in one subsystem are assumed to have 
identical g-factors (g, = g,, Mf = pBg,Sf). 

A less straightforward generalization of the definition of @ is obtained if the unit 
operator is decomposed in terms of projection operators that do not commute. Consider, 
for instance, the projection operators 

$(M, 4, e) = &(+, e, o ) & M ) & ( ~ ,  e, o ) ~ .  

& ( O ,  v, O)$(M)ff(O, T, 0)-= $(-M) 

(16) 

The subspace into which the operator (16) projects is spanned by the eigenvectors of 
the operator k ( 4 ,  8 )  belonging to the eigenvalue M. Because of ( l l ) ,  the identity 

(17) 

and the unitarity of the rotation operators, 

Replacing the operator exp(-pfi)  with exp(-pf i ) i  in the definition of the free 
energy and using the resolution (18), one obtains the following generalizations of (10) 
and (12): 

@( M, 4, 6)  = -p - '  In Tr exp( - p f i )  * @(M, 4, 0))  
47r 

If the system is very large it is to be expected that the function @( M ,  4, 0) varies only 
slowly with the variable M. In such a case we may pass to a LGW Hamiltonian @', a 
function of three variables M", My, M' ranging continuously within a sphere whose 
radius is given by the maximum value of M: 

@ ( M ,  4, e)  =@YM", MY, M ~ ) .  (22) 
For M" = M '  = M' = 0 this definition of @' is unique only if the values @(O, 4, 0)  
coincide for all angles. It should be noted that no assumptions on the continuity of 
@' are needed if one is only interested in discussing the transformation properties of 
this function; for that purpose one simply substitutes the expressions (21) for the 
variables of @ in order to obtain the new function @'. Clearly this construction may 
be performed for each subsystem if the original system is divided into several parts. 
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It is obvious that there exist infinitely many different resolutions of the unity each 
of which can be used to define a LGW Hamiltonian. In any case the resulting function 
contains more information than the partition function because Z can be computed 
from @. On the other hand, the LGW Hamiltonian contains, in general, less detailed 
information on the interaction of the magnetic moments than the Hamilton operator 
does; the conditions under which the two descriptions of the system are fully equivalent 
are discussed in the appendix. 

Which of the many possible resolutions of unity is preferable depends on the further 
steps of the calculation. For instance, the choice of a special resolution may be justified 
by its utility in an approximate calculation of the free energy. In that respect a necessary 
condition for a LGW Hamiltonian to be useful is that its absolute minimum at low 
temperatures occurs for those parameters that label the subspace spanned by the 
groundstate(s) of the system. As can be seen from the representations (12) and (20) 
of the partition function, a restriction of the domain of to a neighbourhood of this 
point means that the original state space is reduced to a small part of it. This implicitly 
defines a new system which should approximate the original one at low temperatures. 
In the appendix we illustrate these ideas with the example of two spins of magnitude 
1, for both the Ising and the Heisenberg interactions. 

There are two more guiding principles for the definition of the LGW Hamiltonian. 
If the partition function is expressed in terms of this function we arrive at a quasiclassical 
description of the quantum system. In this picture the states are specified by the labels 
of the projectors occurring in the resolution of unity. It gives more insight into the 
physical behaviour of the system if these labels are not just some useful mathematical 
entities but refer to quantities that are, at least in principle, measurable. The labels M 
and M, 4, 0 meet this requirement since they are related to the measurement of the 
spin in a given direction. In addition to these considerations, one would like to see 
the symmetry properties of the quantum system also in the quasiclassical picture; this 
topic is discussed in detail in the next section. 

3. Invariance properties of the LGW Hamiltonian 

Consider a LGW Hamiltonian of the form @(MI, el; M 2 ,  4*,  e2; . . , ) where the 
subscripts refer to 'identical' parts of the system, i.e. to subsystems for which the 
eigenvalues of the operators S ;  and their degeneracies coincide. As is evident from 
(19), the function CD depends both on the Hamiltonian fi (and p )  and on the projection 
operators g I ( M l ,  & e l ) .  Each of these projection operators may be represented as [26] 

(23) 
2s 

&w, 41, 61) = 4 0 ,  MI)? + c 4% M)[.%41, el)]" 
n = l  

where S is the maximum eigenvalue of s ;̂ 
c(n ,  MI) = 4% MI)* (24) 

and 
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The subscript I of the rotation operators indicates that they are of the form (7) but 
related to the spin operators Sf of the subsystem. 

To make all these dependences more explicit we change the notation as follows: 

@(Mi,  41, 61; M2, 4 2 7  6'2; . . . 
+ @(k; M I ,  n ( d i ,  61) * Si; MZ, n ( 4 2 ,  02) * S,; . . . ). (26) 

It follows from the definition of the LGW Hamiltonian, equation (19) generalized for 
a decomposition of the system into identical subsystems, and the commutation relations 

[ s f ,  sf,] = o for 1 # I '  (27) 

that Q, is a symmetric function of the arguments referring to different subsystems. That 
is, if the N-tuple P1, P2, . . . is obtained from the N-tuple 1,2,  . . . by a permutation 
P then 

@ ( f i ; M i , n ( 4 1 , 6 i ) . S 1 ;  M * , n ( 4 2 , @ 2 ) * S ~ ; . . * )  

= Q,(fi; MPI, n(4p1,  @PI)  * sP1 ;  MPZ, n ( 4 P 2 ,  @ P 2 )  * S P Z ; .  ' * ). (28) 

Furthermore, the representation (23) of the projection operators entails that 

Q,($fi$-1;Ml,n(41,0~)* M * , n ( 4 , , 6 2 ) .  $&$-I; . . . )  

= Q , ( f i ; M , , n ( 4 1 , 6 1 ) . ~ 1 ; M ~ , n ( 4 , ,  & ) * & ; . . . )  (29) 

for every unitary operator @ ( @ - I  = @'). 
A formally identical relation is obtained if one considers antiunitary operators 

instead of unitary ones. $et U,, u 2 , .  . . be elements of the Hilbert space, c 1 ,  c , , .  . . be 
complex numbers, and A be an antiunitary operator; then 

These equations imply that the states duu  form an orthonormal basis of the Hilbert 
space if the states U ,  form such a basis. Therefore 

Tr exp(-Pfi)&MI, 6 , )  . . . 
=c (uu,  e - P A h f l ,  41 3 6 , )  ' * ' uuj 

(7 

= (uu,  e-P"?/(Ml, C J , ,  6 , )  . . U,)" 

= c (A,,, d e-PAI;I(Ml, 41, e,) . . . U,) 

= 

U 

U 

(du,, A e - p A d - l d ~ , ( M 1 ,  +,, 6,) . . . 
0 

Since p a?d the coefficients c(n, M , )  are real num!ers, the action of the antiunitary 
operator A may be transferred to th,e operators H and $(4, ,  e,), respectively; this 
finally gives relation (29) with $ = A. 

Now let 6' be a unitary or antiunitary operator with the following properties: 

(33) 

(34) 

$fi$-l = fi 
l@n(r$,, 6,)  &,$-I = n ( 4 ; ,  6 ; )  * gP,. 
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In (34) the permutation P :  I - ,  PI and the relation between the angles +,, el and 4k 
0 ;  depend on the transformation under consideraiion. Equation (33) expresses that W 
is a symmetry transformation of the Hamiltonian H while (34) shows that the projection 
operators used to define the LGW Hamiltonian CP are permuted under this transforma- 
tion. If these equations hold true they entail the following symmetry relation of CP: 
@(A; M ~ ,  n ( + , ,  e,) . gI; . . . = 

= q B ;  M ~ ~ ,  n(.bl ,  eb,) - 4,; . . . ). 
M ~ ,  n ( 4 ; ,  e ; )  . . . 

(35) 

(36) 

In this equation Q is the inverse of the permutation P :  

Q( PI) = P( 91) = 1. 

It should be noted that this argument cannot be reversed in general. Even if CP satisfies 
a symmetry relation of the form (35) and we know an operator @ that performs the 
transformation (34), we can only co?:lude from (29) that the LGW Hamiltonians for 
the Hamilton operators fi and fi’HW coincide. From this a coincidence of the two 
Hamilton operatys can only be deduced if there exists a one-to-one correspondence 
between CP and H (see the appendix). 

The symmetry transformations of the Hamiltonian form a group whose irreducible 
(c0)representations determine the (non-accidental) degeneracies of the eigenvalues. 
These degeneracies are of essential importance for the form of the partition function 
and hence for the thymodynamics of the system. Usually certain symmetry properties 
of the Hamiltonian H are obvious from its definition (1) and they admit in most cases 
a simple geometrical interpretation. In order to transfer all these symmetries to the 
LGW Hamiltonian CP it is essential to choose the set of projection operators, i.e. the 
domain of @, in such a way that relation (34) is satisfied for all the known symmetry 
operations & 

The symmetry transformations considered in the following are composed of three 
operations which we now study in more detail. 

Rotation ofspins. Let 6’ be the rotation operator (7) where the sum in (8) extends 
over all spins in the system. Geometrically this corresponds to a transformation where 
the vectors attached to each site are rotated about parallel axes by the same angle. 
Because of the commutation relations of the spin operators 

&,e, I C ~ M ~ ~ ,  0,) . @(4,e ,  + ) - I  = n(+i ,  8 ; )  - 4 (37) 

n(4 i ,  6 ; )  = wq5, 6, c l r ~ 4 ~ ,  0,) (38) 

9 ( 4 , @ ,  $1 = % ( 4 ) q ( e ) % ( + )  (39) 

(40) 

where 

cos q5 -sin 4 0 cos 8 0 sin 8 

-sin 8 0 COS e 
Bz(.)= (si;. co;. ;) a,(e)= ( 0 1 o ) .  
Note that the matrices (39) and (40) form a real three-dimensional representation of 
the rotation group. 

Using again the more concise notation of the preceding paragraph, we therefore 
obtain the following implication: 

r fi, g ~ e ,  +)I  = 0 * a w l ,  d l ,  e,; . . . ) = ow,, 4 ;, e ; ;  . . . ). (41) 
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Here the relation between the angles +,, el and +;, e’, is given by (4), and (38)-(40). 
These relations are easily generalized if the Hamiltonian is invariant under individual 
rotations of the spins about certain axes, as is the case for all Ising models. 

Permutations of spins. Originally the sites where the spins are localized have been 
labelled by an index i E (1, . , N } .  We assume for simplicity that all the spins are 
identical, i.e. the operators Sf all have the same (non-degenerate) eigenvalues g. 

A natural basis of the Hilbert space is then given by the common eigenstatts of 
these operators. For each permutation P : i + Pi there exists a unitary operator U (  P )  
defined by 

- fi(P)ULTI, ,uy - ,UQr 

f i ( P ) $ : f i ( P ) - l =  3 5 .  
where again Q = P -  ’. Equation (42) implies 

(42) 

(43) 

At the start of this section it was assumed that the system can be divided into 
identical subsystems. This implicitly means that the index i can be replaced by a pair 
of indices 1, n with 

l € { l ,  . . . ,  NI} n E (1,. . . , N*} N1 N2 = N. (44) 

A permutation P : 1, n + l‘, n’  transforms subsystems into subsystems if I‘ depends only 
on 1 and P but not on n ( l ’ =  PI). For these permutations 

O ( P ) 3 f f i ( P ) - I =  $5, (45) 

and 

[fi ,  fi(P)I= 0 3 @(MI, 6, 4; . . . I  = @ ( M Q ~ ,  4a l ,  6 ~ ~ ;  . . . I .  (46) 

Time reversal. This is the most interesting transformation because it is the consequences 
of this symmetry that gave rise to divergent opinions and contradictory results in the 
literature. Consider the time reversal operator 6 introduced by Wigner (see, e.g., [ 2 2 ] ) .  
This antiunitary operator reverses all spins 

63f6-1 = - 2 6 .  (47) 

As a consequence 

e,) = -n(+,, e,) .4, = n(&, 6) - $ (48) 

4=C.$-t7r e=7r-e. (49) 

where 

As the exchange integrals Jfj’ are real numbers, 6 is a symmetry operation of all 
Hamiltonians of the form ( 1 )  and the implication for the LGW Hamiltonian @ is 

~ ~ , 6 ~ = o ~ ~ ~ ~ ~ , ~ ~ , e ~ ;  . . . ) = @ ( ~ , , ~ ~ , e ~ ; . . . ) .  (50) 

The symmetry properties of @ for a Hamiltonian that is invariant under a combina- 
tion of the three operations considered above may be deduced from (41), (46) and (50). 
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4. Representations of the symmetry group 

The symmetry g;oup of the Hamiltonia? is defined as the group of all unitary/antiuni- 
tary operators W that commute with H. In principle this is an extremely large group 
but, as pointed out previously, only a rather small subgroup of it is known from the 
beginning. If we want to discuss the symmetry properties of the LGW Hamiltonian 
even this group %,, has to be restricted in general to a subgroup 9 because the operators 
$ have to satisfy relations of the form (34) in addition to (33). Each transformation 
$E % yields a relation of the form 

W ( M )  = W (  9( $ ) M )  (51) 

here M = ( M ; ,  M:, Mf, M ; ,  . . . ) is a vector with 3N1 components and 9( ti/.) is a 
real orthogonal matrix of dimension 3 N ,  whose form is evident from (41), (46) and (50): 

W&4,@, $1) = 8(N*)@9(4, 4 CL) 
9( i i ( P ) )  = B O  8(3)  PI,,,= 8QlJ (53) 

B(6) = -8(3N1). (54) 

( 5 2 )  

In these equations 8 ( d )  is the unit matrix of dimension d and 

(&@ ~ 3 ) p ' , q . 7  = dp,q%,s. 

It follows from the form of the matrices (52)-(54) that 

( 5 5 )  

& = $& 3 9( G3) = 9( +JB( GI). (56 )  

This means that the matrices 9( @) form a real orthogonal representation of the group 
9. This representation is in general not a faithful :ne because all transformations $ 
that commute with the joint projection operators P ( M )  = $(Mi, & ,  el; . . . ) are rep- 
resented by the unit matrix 8(3N1). If the parameters M which label the projection 
operators are embedded into a Euclidean space of dimension 3N1 the matrices 9 may 
be considered as linear transformations of this real vector space. This construction 
shows how a group % of symmetry operators in the Hilbert space of the quantum 
mechanical problem is related to a group %l that consists of linear operators in a real 
parameter space and is a homomorphic image of %. 

It is possible to extend the definition of the LGW Hamiltonian 0 by allowing the 
argument to vary over the whole real vector space (or a compact subset). In addition, 
we may also consider other functions defined on the same domain; they occur when 
the LGW Hamiltonian is written as a sum of several terms (see, e.g., the appendix) or 
if the exchange integrals are varied for a given system of spins. The transformations 
9( $) of the common domain of definition can be used to define transformations 
in the set of considered functions: 

(@*)(M) =*(9( L t y M ) .  (57) 

This relation resembles the way a rotation operator in Hilbert space is assigned to a 
rotation in the Euclidean space on which the wavefunctions are defined. However, in 
deriving further formal analogies between the functions considered here and wavefunc- 
tions in a quantum mechanical problem, one has to keep in mind several concepts 
that are included in the definition of a quantum mechanical Hilbert space XQM: (i)  
the elements are complex-oalued functions or vectors; (ii) XQM is a linear space over 
the complex number field; (iii) 5YQM is invariant under the considered group of 
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linear/antilinear operators; (iv) these operators are unitary/antiunitary in the sense of 
the scalar product defined in gQM. It is exactly these properties that allow one to 
simplify the eigenvalue problem of the Hamilton operator by using the results of 
(ordinary) representation theory. If we want to exploit this (or a modified) theory also 
in the quasiclassical picture used here we first have to make more assumptions on the 
functions that are taken into account. 

First we have to decide whether these functions should be real- or complex-valued. 
All LGW Hamiltonians, both exact and approximate ones, are obviously real functions 
but there do  not exist any principal reasons to exclude complex-valued auxiliary 
functions. If such functions are included it is natural to embed them into a complex 
linear space FeQcL (QCL = quasiclassical). In this space the operator of complex conjuga- 
tion is defined through 

(EVr) (M)  =Y(M)*.  ( 5 8 )  

(@'P) (M)  ='PI(-M) (59 )  

This antilinear operator must not be confused with the linear operator 6 

which reflects the effect of time reversal in the quasiclassical description of the system. 
As the equations expressing the invariance properties of the LGW Hamiltonian are all 
of the form 

( @ @ ) ( M )  = @ ( M )  (60) 

it is also natural to choose FeQcL in such a way that this space is invariant under all 
transformations There is no need to introduce a scalar product if %QcL is of finite 
dimension and the group %1 is compact; these two conditions suffice to allow for the 
use of all the familiar results of representation theory. The group represented in VQcL 
is the symmetry group of the LGW Hamiltonian 

% 2 ~ K =  % ~ x @ x K .  (61 

The group g2 is a homomorphic image of %,, the homomorphism depending on the 
functions included in FeQcL,  and 0 and K are the groups generated by 6 and E, 
respectively. The group g2 x K is a 'grey' antiunitary group, so that the corresponding 
theory of corepresentations has to be used. 

It is often convenient to include in FeQcL the linear functions 

A ~ ( M )  = M;.  (62) 
These functions form a basis of the ring of polynomial functions which are of interest 
for approximations of the LGW Hamiltonian. Linear functions are also needed if an 
interaction with an external magnetic field is added to the Hamilton operator (i). 
Because of (57), the functions (62) transform according to the representation 9( W )  
under the action of the linear operators W, so that %2z Y1 in this case. There are two 
more interesting consequences. (i) The linear functions (62) and all their linear 
combinations transform like axial vectors under the (linear) operation of time reversal, 
i.e. 6 A  = -A. Therefore if  the LGW Hamiltonian is approximated by a polynomial in 
linear functions, no invariants of odd order can appear provided that the Hamilton 
operator commutes with Wigner's time reversal operator. (ii) The complex space 
spanned by the 3N1 functions (62) is invariant under the complex conjugation and 
therefore a carrier space of a corepresentation of the symmetry group (61). If  this 
corepresentation is decomposed into irreducible constituents (coirreps) then those of 
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type I1 will occur with even multiplicity and those of type 111 in conjugated pairs. (We 
note in passing that an equivalent result is obtained if one considers only real functions 
from the outset and uses the corresponding representation theory [27]). 

We close this section by pointing out that our conclusions on the admitted coirreps 
are equivalent to Kovalev’s [ 51 use of ‘odd physically irreducible representations’ and 
to Toledano and Toledano’s [6] use of ‘odd physically irreducible corepresentations’ 
(the latter terminology being to a certain extent misleading). They are, however, distinct 
from Cracknell’s [7] use of corepresentations because he excludes the linear transforma- 
tion 6 from consideration and thus arrives at the incorrect result that in magnetic 
phase transitions there could exist odd invariants in the Landau expansion. 

5. Symmetry groups of a magnetic crystal 

In crystallography a crystal is represented by a structure, i.e. union of identical Bravais 
lattices. A model of a magnetic crystal is obtained by assigning a spin to each site 
where spins on crystallographically equivalent sites are assumed to have the same 
magnitude. This is an infinite system since a Bravais lattice consists of infinitely many 
points. A finite system is obtained by imposing ‘periodic boundary conditions’. That 
is, one selects a subgroup YPB of the translation group Y of the lattice which is 
generated by three large translations. Identifying all points that are connected by 
translations of FpB, one ends up with a finite ndmber of points, say N, that remain 
distinguishable. As the elements of FPB have no visible effect on the finite system, the 
non-trivial crystallographic transformations are no longer given by 9, the space group 
of the structure, but by its homomorphic image Y ( N )  = 9’/ FpB. If the vector a is a 
point of the structure, which is also used as a label of one of the distinguishable points 
of the finite system, and (Rlr) an element of the space group Y, then the transformation 
of this point under the corresponding element ( R ) t )  E Y’(N) is given by the following 
relation: 

(R l t )a  = RU + t(modu1o YpB). (63) 
In this purely geometrical picture crystal symmetry shows up in the way the N points 
are permuted; the transformation (63) corresponds to the permutation P : i + i’ of 
section 3 and the transformation (R- l l -R- l t )  to the inverse permutation Q. In the 
corresponding model of a magnetic crystal this symmetry is reflected in the relations 
between the exchange integrals: 

(64) J t ; V  = RE.6 RT.7 J S  0 7  

a b  (R- ’ I -R- ’  t ) n , f R - ’ / - R - ’ t ) b  * 
€ ‘ 3 v  

!elcause of these symmetry relations there exists a group 9’(4N) of operators of the form 
R U ( P )  (cf section 3) which is a symmetry group of the Hamiltonian (1) and, being 
isomorphic to the group 9’(k;, is a homomorphic image of a space groFp 9’. The 
Hamilton operator (1) is also invariant under the time reversal operator 0 and may 
admit even more symmetry transformations such as collective or individual continuous 
rotations of spins, depending on the details of the interaction (Heisenberg, Ising, etc); 
in any case S ( N l  x 0 c 9. 

To define the subsystems that are used in the definition of the LGW Hamiltonian 
we choose a subgroup Y(N2; of YfN) = F/YpB. Next we select a vector a ,  and define 
the set Z, in the following way: 

~ € 2 ~  e a = u , + t  for some ( E I r ) E Y ( N 2 ) .  (65) 
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The spins attached to the sites belonging to XI form the subsystem I = 1. In a similar 
way the other NI = N /  N2 subsystems are introduced. For each set X i  there exists a 
stabilizer in S ( N )  consisting of all ‘visible’ space group transformations which leave 
this set invariant. Each stabilizer obviously contains the group Y(N2) ,  and the intersec- 
tion of the N ,  stabilizers reduces to this group if NI is sufficiently large. The space 
group transformations which map each subset X I  onto another subset XI, therefore 
form a group 9’(,!) EZ Y,,)/ Y-(N2) and the isomorphic group .Y(.w,) of unitary operators 
transforms subsystems into subsystems. Those elements of 3, the symmetry group of 
the Hamilton operator, which satisfy this condition determine the invariance group 

of the LGW Hamiltonian Q, (cf section 3) .  If we start with a Hamiltonian of the 
form (1) then the present construction shows that 3, contains at least a group isomorphic 
to YiN, )  x 0, the first of these two groups reflecting the crystallographic symmetries of 
the underlying structure. The whole group is a grey magnetic group because of the 
presence of the second factor. Even if the interaction gives rise to transitions between 
ordered phases this does not change the symmetry of the LGW Hamiltonian, nor that 
of Landau’s free energy. If the group of the higher-symmetry ordered phase is a black 
and white group it i s  a proper subgroup of VII. A physically interesting situation where 
(el itself is a black and white magnetic group is found only in case that the microscopic 
Hamiltonian contains contributions from (effective) external magnetic fields. 

6. Conclusion 

The present work was motivated by the contradictions in literature that are related to 
the transformation properties of the order parameters and the thermodynamic potential 
in the case of magnetic phase transitions. In order to clarify the concepts used in a 
theoretical description of these phenomena, we discussed in this paper the transforma- 
tion properties of the Landau-Ginzburg- Wilson ( LGW) Hamiltonian Q,. This function 
provides a quasiclassical description of a spin system which is more detailed than the 
description by means of an equilibrium thermodynamic potential; but compared to 
the microscopic quantum mechanical system from which Q, is obtained some details 
of the model are, in general, no longer fully transparent. The importance of Q, Ges in 
the fact that (i) this function is uniquely determined by the Hamilton operator H and 
the choice of the variables (expectation values of magnetic moments); and (ii) a free 
energy of the Landau type may be obtained by approximating Q, in the neighbourhood 
of a point which characterizes a magnetic phase. While the second aspect will be 
discussed in more detail elsewhere [24], the definition of the LGW Hamiltonian and 
the resulting symmetry properties are considered in this paper. Taking the connection 
with Landau’s free energy for granted, the transformation properties of Q, and other 
functions defined on the same order parameters are not only interesting in themselves 
but also of relevance for the Landau theory of magnetic phase transitions. 

In our discussion we started from the quantum mechanical Hilbert space and a set 
of projection operators whose labels fixed the argument of the LGW Hamiltonian. The 
symmetry transformations of the Hamilton operator which are ‘compatible’ with the 
projection operators (for details see section 3) form a group % which includes the 
antiunitary operator of time inversion if no external magnetic field is present. These 
symmetry operators determine the invariance properties of Q, and the transformation 
properties of other functions defined on the same domain. This is a consequence of 
the fact that in the space of these functions a linear operator is related to each operator 
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of the group ie; this results in a group iel which is a homomorphic image of $2. It 
should be noted that in this construction the antilinear quantum mechanical operator 
of time inversion is mapped onto a linear operator whose action consists in reversing 
expectation values of all magnetic moments. The LGW Hamiltonian is invariant under 
iel, no matter which type of magnetic phase transition is considered in the following. 
The group %I1 is a grey magnetic group in the absence of external magnetic fields, and 
a black and white one if such fields are present. Other real-valued functions, that are 
considered beside the LGW Hamiltonian, transform according to real (orthogonal) 
representations and the smallest representations of this kind are equivalent to the 
complex representations called ‘physically irreducible’ in the literature. 

It is possible to also consider complex-valued functions of the order parameters 
and to introduce the antilinear operator of complex conjugation as additional symmetry 
operation of @. This results in a ‘grey’ antiunitary group of the form iel x K and the 
corresponding theory of corepresentations has to be used in this case. It is intended 
to discuss these two formally different but completely equivalent group theoretical 
approaches to magnetic phase transitions (representations over the field of real num- 
bers-corepresentations of ‘grey’ groups) in the next paper of this series. 
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Appendix 

In this appendix we discuss the relation between the Hamiltonian and the LGW 
Hamiltonian @ in more detail. We begin by investigating under which conditions the 
Hamilton operator is uniquely determined by the function @. It is sufficient to consider 
the functions (10) and (19), respectively, because all arguments are easily generalized 
for a system that is divided into several subsystems. 

If the functions (10) coincide over>he whole range of /3 for two Hamilton operators 
A, and fi,, 6 is the operator A, - H,, and the function A is defined by 

A (  M )  = Tr b@( M )  (66)  
then this function vanishes identic?lly. The point is whether or not A = 0 implies b = 8. 
Now, if A = 0 for some operator D this relation remains true if we change the matrix 
elements that relate different values of, M. Therefore the function (10) contains less 
information th!n the Hamiltonian if H is not of Ising type. Even then @ ( M )  is an 
equivalent of H only in case that none of the eigenvalues M is degenerate: 

Tr @ ( M )  = 1 for all M. (67) 
If the function (19) is considered instead of (10) then 

A(M, 4, e )  = Tr b & ~ ,  4, e)  
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and one has to find out when A = O  implies B=6. Here (67) is again found to be a 
yecessary condition; this follows fromAthe fact that if t yo  eigenstates uM and u b  of 
S’ are orthogonal so are all the states R ( + ,  O,O)u, and R ( + ‘ ,  e’, O)ul , .  However, (67) 
is also a sufficient condition for the LGW Hamiltonian (19) to contain exactly the same 
information as the Hamilton operator (1). To see this, note that (67) implies that the 
Hilbert space % is the carrier space of an irreducible representation D S  of SU(2).  It 
is well known that in this case an operator 6 is already fixed by the values of the 
corresponding function A on tkat part of its domain where M = S (these values of A 
are the expectation values of D for coherent spin states, see [29] and the references 
quoted therein). 

Next let us consider the form of the function @ ( M I ,  4 , ,  e, ,  . . . ) assuming that all 
the subsystems are irreducible and PBg, = 1 for all magnetic moments. 
space % is of finite dimension 

K 
exp(-pA) = d,(p)i+ 1 d k ( p ) f i k  

k = l  

where the coefficients dk(p) are real and K C dim % (the lower 
degenerate the eigenvalues of fi are). As the exchange integrals 
functions of the site indices, 

Since the Hilbert 

K is, the more 
are symmetrical 

where the real numbers aIj  and the unit vectors .Ej %pecify the interaction between 
the two magnetic moments. Therefore theAoperator H k  is, a :um of terms each of 
which consists of 2k factors of the form n * S ;  here n = n f j ,  S = Si or gj, and repetitions 
are allowed. To calculate the contribution of this term to the LGW Hamiltonian one 
has to take into account that 

i ( 4 ,  e, o)+. - M(4, e, 0) = ~ ( 4 ,  e, o) - ’n .  S (71) 

Moreover, 

where P, is the usual Legendre polynomial. The function TIIS,’ is also a polynomial of 
degree I and parity ( -1 ) ’ :  

TIT2 =$[3M2 - S(S+ l ) ]  n p  = is( S + 1 )  etc. (73) n ? ’ = M  

If the parameters Mf, defined in section 2 through (21), are used as variables, one 
obtains (for Mi>O) 

Equation (74) shows explicitly the one-to-one correspondence between the Hamilton 
operator and the LGW Hamiltonian provided that the variables are suitably chosen 
and the system is composed of irreducible spins (in the derivation of (74) this condition 
is used in (72)).  
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All these properties show up even in the simplest example: two interacting spins 
of magnitude i. For a Heisenberg interaction 

A = -4JS, * S,  

while for the corresponding Ising model 

e-PJ 
[(eZPJ +cosh 2PJ)+sinh 2@J(nl * n,)] (75) = - 

8 7 ~ ’  

(76) 
1 

[cosh pJ+s inh  PJ(n;n;)]. = -4JSfS; e-P@ = - 
47T2 

As the spins are irreducible all the symmetry properties of the Hamilton operators are 
reflected in the form of the LGW Hamiltonians. Moreover, in both examples the 
minimum of this function characterizes the ground states of the system. For the 
Heisenberg interaction this is located at n, n, = 1; this corresponds to the states 
&(4,  0, O)u++ which span the subspace with S = 1. In the Ising model the minimum 
is obtained for n f n ;  = 1, i.e. for the states U++ and U - - .  
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